Perancangan Mesin 3D Printing Model Cartesian
(1) Universitas; Subang
(2) Universitas; Subang
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
H. Yuk et al., “3D printing of conducting polymers,” Nat. Commun., vol. 11, no. 1, pp. 4–11, 2020, doi: 10.1038/s41467-020-15316-7.
A. A. Nurul Amri and W. Sumbodo, “Perancangan 3D Printer Tipe Core XY Berbasis Fused Deposition Modeling (FDM) Menggunakan Software Autodesk Inventor 2015,” J. Din. Vokasional Tek. Mesin, vol. 3, no. 2, pp. 110–115, 2018, doi: 10.21831/dinamika.v3i2.21407.
Y. Zhang, Y. Zhang, W. She, L. Yang, G. Liu, and Y. Yang, “Rheological and harden properties of the high-thixotropy 3D printing concrete,” Constr. Build. Mater., vol. 201, pp. 278–285, 2019, doi: 10.1016/j.conbuildmat.2018.12.061.
M. Kaszyńska et al., “Evaluation of suitability for 3D printing of high performance concretes,” MATEC Web Conf., vol. 163, pp. 1–8, 2018, doi: 10.1051/matecconf/201816301002.
B. J. Brooks, K. M. Arif, S. Dirven, and J. Potgieter, “Robot-assisted 3D printing of biopolymer thin shells,” Int. J. Adv. Manuf. Technol., vol. 89, no. 1–4, pp. 957–968, 2017, doi: 10.1007/s00170-016-9134-y.
M. Abdul and M. Amrullah, “Rancang Bangun Prototipe Printer 3 Dimensi ( 3D ) Tipe Cartesian Berbasis Fused Deposition Modelling ( Fdm ) Naskah Publikasi Tugas Akhir,” 2018.
Y. Tlegenov, G. S. Hong, and W. F. Lu, “Nozzle condition monitoring in 3D printing,” Robot. Comput. Integr. Manuf., vol. 54, no. December 2017, pp. 45–55, 2018, doi: 10.1016/j.rcim.2018.05.010.
B. M. Schmitt, C. F. Zirbes, C. Bonin, D. Lohmann, D. C. Lencina, and A. Da Costa Sabino Netto, “A comparative study of cartesian and delta 3d printers on producing PLA parts,” Mater. Res., vol. 20, pp. 883–886, 2017, doi: 10.1590/1980-5373-mr-2016-1039.
A. Prakasa, S. P. Sutisna, and A. R. Ahmad, “Penentuan Setting Optimal Mesin 3D Printer Berbasis Fused Deposition Modeling Menggunakan Metode Taguchi,” AME (Aplikasi Mek. dan Energi) J. Ilm. Tek. Mesin, vol. 4, no. 2, 2018, doi: 10.32832/ame.v4i2.1538.
G. Gaal et al., “Simplified fabrication of integrated microfluidic devices using fused deposition modeling 3D printing,” Sensors Actuators, B Chem., vol. 242, pp. 35–40, 2017, doi: 10.1016/j.snb.2016.10.110.
Z. Rahman, S. F. Barakh Ali, T. Ozkan, N. A. Charoo, I. K. Reddy, and M. A. Khan, “Additive Manufacturing with 3D Printing: Progress from Bench to Bedside,” AAPS J., vol. 20, no. 6, pp. 2–14, 2018, doi: 10.1208/s12248-018-0225-6.
S. Mocahmad Diki Muliyawan, Gatoto Eka Pramono, “Rancang Bangun Konstruksi Rangka Mesin 3D Printer Tipe Cartesian Berbasis Fused Deposition Modelling (FDM),” J. Tek. Mesin, vol. 3, no. 4, 2017., pp. 252–257,
R. C. Luo, L. C. Hsu, T. J. Hsiao, and Y. W. Perng, “3D Digital Manufacturing via Synchronous 5-Axes Printing for Strengthening Printing Parts,” IEEE Access, vol. 8, 2020, pp. 126083–126091, doi: 10.1109/ACCESS.2020.3007772.
Luki Aditya, “Prototipe 3D Printer Berbasis Mikrokontroler,” President University, 2019.
N. A. Bin Sukindar, M. K. A. M. A. Bin, B. T. B. Hang Tuah Bin, C. N. A. J. Binti, and M. I. S. I. Bin, “Analysis on the impact process parameters on tensile strength using 3d printer repetier-host software,” ARPN J. Eng. Appl. Sci., vol. 12, no. 10, 2017, pp. 3341–3346.
A. Elkaseer, S. Schneider, and G. Scholz, “applied sciences Experiment-Based Process Modeling and Optimization for High-Quality and Resource-E ffi cient,” Appl. Sci., 2020.
DOI: https://dx.doi.org/10.31543/jtm.v5i1.557
Article Metrics
Abstract view : 745 timesPDF - 581 times
Refbacks
- There are currently no refbacks.